Extensions 1→N→G→Q→1 with N=C6 and Q=C22xC4

Direct product G=NxQ with N=C6 and Q=C22xC4
dρLabelID
C23xC1296C2^3xC1296,220

Semidirect products G=N:Q with N=C6 and Q=C22xC4
extensionφ:Q→Aut NdρLabelID
C6:1(C22xC4) = S3xC22xC4φ: C22xC4/C2xC4C2 ⊆ Aut C648C6:1(C2^2xC4)96,206
C6:2(C22xC4) = C23xDic3φ: C22xC4/C23C2 ⊆ Aut C696C6:2(C2^2xC4)96,218

Non-split extensions G=N.Q with N=C6 and Q=C22xC4
extensionφ:Q→Aut NdρLabelID
C6.1(C22xC4) = C4xDic6φ: C22xC4/C2xC4C2 ⊆ Aut C696C6.1(C2^2xC4)96,75
C6.2(C22xC4) = S3xC42φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.2(C2^2xC4)96,78
C6.3(C22xC4) = C42:2S3φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.3(C2^2xC4)96,79
C6.4(C22xC4) = C4xD12φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.4(C2^2xC4)96,80
C6.5(C22xC4) = C23.16D6φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.5(C2^2xC4)96,84
C6.6(C22xC4) = S3xC22:C4φ: C22xC4/C2xC4C2 ⊆ Aut C624C6.6(C2^2xC4)96,87
C6.7(C22xC4) = Dic3:4D4φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.7(C2^2xC4)96,88
C6.8(C22xC4) = Dic6:C4φ: C22xC4/C2xC4C2 ⊆ Aut C696C6.8(C2^2xC4)96,94
C6.9(C22xC4) = S3xC4:C4φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.9(C2^2xC4)96,98
C6.10(C22xC4) = C4:C4:7S3φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.10(C2^2xC4)96,99
C6.11(C22xC4) = Dic3:5D4φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.11(C2^2xC4)96,100
C6.12(C22xC4) = S3xC2xC8φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.12(C2^2xC4)96,106
C6.13(C22xC4) = C2xC8:S3φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.13(C2^2xC4)96,107
C6.14(C22xC4) = C8oD12φ: C22xC4/C2xC4C2 ⊆ Aut C6482C6.14(C2^2xC4)96,108
C6.15(C22xC4) = S3xM4(2)φ: C22xC4/C2xC4C2 ⊆ Aut C6244C6.15(C2^2xC4)96,113
C6.16(C22xC4) = D12.C4φ: C22xC4/C2xC4C2 ⊆ Aut C6484C6.16(C2^2xC4)96,114
C6.17(C22xC4) = C2xDic3:C4φ: C22xC4/C2xC4C2 ⊆ Aut C696C6.17(C2^2xC4)96,130
C6.18(C22xC4) = C2xD6:C4φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.18(C2^2xC4)96,134
C6.19(C22xC4) = C4xC3:D4φ: C22xC4/C2xC4C2 ⊆ Aut C648C6.19(C2^2xC4)96,135
C6.20(C22xC4) = C22xC3:C8φ: C22xC4/C23C2 ⊆ Aut C696C6.20(C2^2xC4)96,127
C6.21(C22xC4) = C2xC4.Dic3φ: C22xC4/C23C2 ⊆ Aut C648C6.21(C2^2xC4)96,128
C6.22(C22xC4) = C2xC4xDic3φ: C22xC4/C23C2 ⊆ Aut C696C6.22(C2^2xC4)96,129
C6.23(C22xC4) = C2xC4:Dic3φ: C22xC4/C23C2 ⊆ Aut C696C6.23(C2^2xC4)96,132
C6.24(C22xC4) = C23.26D6φ: C22xC4/C23C2 ⊆ Aut C648C6.24(C2^2xC4)96,133
C6.25(C22xC4) = D4xDic3φ: C22xC4/C23C2 ⊆ Aut C648C6.25(C2^2xC4)96,141
C6.26(C22xC4) = Q8xDic3φ: C22xC4/C23C2 ⊆ Aut C696C6.26(C2^2xC4)96,152
C6.27(C22xC4) = D4.Dic3φ: C22xC4/C23C2 ⊆ Aut C6484C6.27(C2^2xC4)96,155
C6.28(C22xC4) = C2xC6.D4φ: C22xC4/C23C2 ⊆ Aut C648C6.28(C2^2xC4)96,159
C6.29(C22xC4) = C6xC22:C4central extension (φ=1)48C6.29(C2^2xC4)96,162
C6.30(C22xC4) = C6xC4:C4central extension (φ=1)96C6.30(C2^2xC4)96,163
C6.31(C22xC4) = C3xC42:C2central extension (φ=1)48C6.31(C2^2xC4)96,164
C6.32(C22xC4) = D4xC12central extension (φ=1)48C6.32(C2^2xC4)96,165
C6.33(C22xC4) = Q8xC12central extension (φ=1)96C6.33(C2^2xC4)96,166
C6.34(C22xC4) = C6xM4(2)central extension (φ=1)48C6.34(C2^2xC4)96,177
C6.35(C22xC4) = C3xC8oD4central extension (φ=1)482C6.35(C2^2xC4)96,178

׿
x
:
Z
F
o
wr
Q
<