extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C22xC4) = C4xDic6 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 96 | | C6.1(C2^2xC4) | 96,75 |
C6.2(C22xC4) = S3xC42 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.2(C2^2xC4) | 96,78 |
C6.3(C22xC4) = C42:2S3 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.3(C2^2xC4) | 96,79 |
C6.4(C22xC4) = C4xD12 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.4(C2^2xC4) | 96,80 |
C6.5(C22xC4) = C23.16D6 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.5(C2^2xC4) | 96,84 |
C6.6(C22xC4) = S3xC22:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 24 | | C6.6(C2^2xC4) | 96,87 |
C6.7(C22xC4) = Dic3:4D4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.7(C2^2xC4) | 96,88 |
C6.8(C22xC4) = Dic6:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 96 | | C6.8(C2^2xC4) | 96,94 |
C6.9(C22xC4) = S3xC4:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.9(C2^2xC4) | 96,98 |
C6.10(C22xC4) = C4:C4:7S3 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.10(C2^2xC4) | 96,99 |
C6.11(C22xC4) = Dic3:5D4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.11(C2^2xC4) | 96,100 |
C6.12(C22xC4) = S3xC2xC8 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.12(C2^2xC4) | 96,106 |
C6.13(C22xC4) = C2xC8:S3 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.13(C2^2xC4) | 96,107 |
C6.14(C22xC4) = C8oD12 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | 2 | C6.14(C2^2xC4) | 96,108 |
C6.15(C22xC4) = S3xM4(2) | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 24 | 4 | C6.15(C2^2xC4) | 96,113 |
C6.16(C22xC4) = D12.C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | 4 | C6.16(C2^2xC4) | 96,114 |
C6.17(C22xC4) = C2xDic3:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 96 | | C6.17(C2^2xC4) | 96,130 |
C6.18(C22xC4) = C2xD6:C4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.18(C2^2xC4) | 96,134 |
C6.19(C22xC4) = C4xC3:D4 | φ: C22xC4/C2xC4 → C2 ⊆ Aut C6 | 48 | | C6.19(C2^2xC4) | 96,135 |
C6.20(C22xC4) = C22xC3:C8 | φ: C22xC4/C23 → C2 ⊆ Aut C6 | 96 | | C6.20(C2^2xC4) | 96,127 |
C6.21(C22xC4) = C2xC4.Dic3 | φ: C22xC4/C23 → C2 ⊆ Aut C6 | 48 | | C6.21(C2^2xC4) | 96,128 |
C6.22(C22xC4) = C2xC4xDic3 | φ: C22xC4/C23 → C2 ⊆ Aut C6 | 96 | | C6.22(C2^2xC4) | 96,129 |
C6.23(C22xC4) = C2xC4:Dic3 | φ: C22xC4/C23 → C2 ⊆ Aut C6 | 96 | | C6.23(C2^2xC4) | 96,132 |
C6.24(C22xC4) = C23.26D6 | φ: C22xC4/C23 → C2 ⊆ Aut C6 | 48 | | C6.24(C2^2xC4) | 96,133 |
C6.25(C22xC4) = D4xDic3 | φ: C22xC4/C23 → C2 ⊆ Aut C6 | 48 | | C6.25(C2^2xC4) | 96,141 |
C6.26(C22xC4) = Q8xDic3 | φ: C22xC4/C23 → C2 ⊆ Aut C6 | 96 | | C6.26(C2^2xC4) | 96,152 |
C6.27(C22xC4) = D4.Dic3 | φ: C22xC4/C23 → C2 ⊆ Aut C6 | 48 | 4 | C6.27(C2^2xC4) | 96,155 |
C6.28(C22xC4) = C2xC6.D4 | φ: C22xC4/C23 → C2 ⊆ Aut C6 | 48 | | C6.28(C2^2xC4) | 96,159 |
C6.29(C22xC4) = C6xC22:C4 | central extension (φ=1) | 48 | | C6.29(C2^2xC4) | 96,162 |
C6.30(C22xC4) = C6xC4:C4 | central extension (φ=1) | 96 | | C6.30(C2^2xC4) | 96,163 |
C6.31(C22xC4) = C3xC42:C2 | central extension (φ=1) | 48 | | C6.31(C2^2xC4) | 96,164 |
C6.32(C22xC4) = D4xC12 | central extension (φ=1) | 48 | | C6.32(C2^2xC4) | 96,165 |
C6.33(C22xC4) = Q8xC12 | central extension (φ=1) | 96 | | C6.33(C2^2xC4) | 96,166 |
C6.34(C22xC4) = C6xM4(2) | central extension (φ=1) | 48 | | C6.34(C2^2xC4) | 96,177 |
C6.35(C22xC4) = C3xC8oD4 | central extension (φ=1) | 48 | 2 | C6.35(C2^2xC4) | 96,178 |